Biosensor Produced in Iran to Diagnose Agents Harmful to DNA

Dec. 14, 2015

Iranian researchers from Isfahan University of Technology produced a nanobiosensor to study the effects of various elements on DNA degradation and the methods to prevent it.
The sensor is able to sense and measure the amount of DNA degradation in the presence of pharmaceutical materials.
Since DNA degradation is the source of cancers, mutations and gene diseases, many researchers have studied the effective parameters on DNA degradation in recent years, and they have tried to find effective methods to prevent the degradation. Therefore, researchers produced a nanobiosensor at laboratorial scale to study the subject.
The biosensor has been manufactured through a simple, quick and cost-effective method, and carbon nanotubes have been used in the production of the sensor. In this research, DNA degradation by using dopamine in absence and presence of a few metal ions was investigated and a few methods were suggested to prevent the degradation.

The aim of the research was to present and study a sensor that enables the investigation of DNA degradation by dopamine in the absence and presence of metal ions. The researchers also studied the effect of the presence of some antioxidants such as ascorbic acid and glutathione on the prevention of DNA degradation.
Results showed that compounds such as dopamine and copper and iron ions are not able to degrade DNA by themselves. However, the simultaneous presence of dopamine and copper ion or iron ion degrades DNA. The effectiveness of the two antioxidants showed that prevention of glutathione is two times higher than that of ascorbic acid.

source: 
Nanotechnology Now